Вопрос 4.53. схема работы и принцип действия струйного насоса

Струйный насос, принцип работы

Cтруйный насос – простейший аппарат, использующий для работы динамику потока жидкости. Является одним из видов нагнетателей. Простой, потому что в своей конструкции не имеет составных частей, которые движутся и трутся во время работы. Поэтому устройство данного типа обладает высокой стойкостью и длительностью эксплуатации.

Впервые струйный насос был применен еще в 19 веке в качестве лабораторного средства для выкачивания воды и избыточного воздуха из пробирочных колб. Немного позже данное устройство нашло применение в шахтах горнодобывающей промышленности для откачки воды.

Рисунок 1 – Струйный насос

На сегодняшнем этапе развития насосного оборудования, струйных насосов существует несколько модификаций:

  • элеваторы – используются в внутридомовых смесительных системах отопления
  • инжекторы – используются в энергетическом теплофикационном оборудовании;
  • эжекторы – только для сред в жидкой фазе.

Принцип работы струйного насоса

Принцип работы струйного насоса организован на передвижении среды различного агрегатного состояния по трубопроводу с вмонтированным в него соплом, которое конструктивно выполнено суженным. Благодаря сужению движение жидкости, а именно ее скорости, повышается. При этом энергия движения потока превращается в кинетическую энергию.

Всасывание жидкой среды происходит из патрубка, который в свою очередь соединяется с пространством усреднительно-смесительной камеры. После этого жидкие фазы соединяются и перемешиваются, и далее смесь движется по диффузору к потребителю. В этом случае уже производится обратное превращение энергии.

Другими словами, струйный насос не относится к нагнетательным устройствам в повседневном понятии, потому что он не обеспечивает избыточный напор на стороне нагнетательного патрубка. В струйном насосе, как описано выше, выполняется двойное превращение энергии гидравлики потока.

Как работает струйный насос

Рабочая жидкость под высоким давлением доставляется к сужающемуся соплу. Струя, которая вытекает из устья сопла, уменьшает давление в камере смесительной ниже атмосферного. Вследствие этого второй поток инжектируемой жидкости смешивается со струей и далее смесь движется в рабочую камеру.

В камере смешения инжектируемая полностью перемешивается с рабочей жидкостью, и выравниваются их давления и скорости. Хорошо перемешанный поток жидкости поступает далее в выходной диффузор.

В диффузоре происходит снижение кинетики смеси и возрастание потенциальной энергии потока. После прохождения диффузора потенциальная энергия поток смеси достаточна для поступления к потребителю (как правило – это резервуар сбора жидкости).

Схема работы струйного устройства

Рисунок 2 – Принципиальная схема функционирования струйного насоса

1- трубопровод подвода рабочей жидкости; 2 – сопло насоса; 3 – трубопровод подвода инжектируемой жидкости (пространство вокруг сопла называется камерой подвода или приемной); 4 – камера смешивания потоков; 5 – выходной диффузор.

Основным, описывающим техническую сторону струйного насосного утройства, составляет коэффициент «эжекции» (в разных источниках этот же коэффициент называют «подсосом»). Данный коэффициент определяется отношением подачи рабочего объема жидкости к объему перекачиваемого смешанного потока.

Данного типа насосы обладают относительно маленьким КПД, однако в отдельных случаях они просто бесценны. К примеру, перекачивание химических газов или жидкостей, где использование центробежных лопастных нагнетателей просто невозможно (струйный насос дозатор изображенный на рисунке 3).

Рисунок 3 – Струйный насос дозатор для химических веществ

Очень часто принципиальные схемы включения струйных насосов компонуются в последовательное соединение нескольких агрегатов. В этом случае насосы конструируются с разными диаметрами сопла, что позволяет регулировать характеристику нагнетаемого потока в рабочем диапазоне включенных последовательно агрегатов.

Классификация по типу установки — погружные или поверхностные насосы

Все насосы бывают погружными или поверхностными. Это классификация определяет расположение оборудование и принцип его работы.

Погружные насосы имеют особенную конструкцию для полного погружения в перекачиваемую жидкость. Эти специализированные насосы используются в различных промышленных и коммерческих целях, встречаются и на территории частных домов.

Конструкция погружного насоса имеет определенные особенности:

  • оснащен водонепроницаемыми кабелями, которые подают питание непосредственно на двигатель. Поскольку речь идет о погружении в воду, производители продумывают защиту от негативного воздействия водной среды на материалы агрегата;
  • двигатель и корпус турбины соединены между собой;
  • механические и электрические элементы управления находятся в защитном корпусе, чтобы не допустить попадание воды.

Для эффективной и бесперебойной работы оборудования через насос должно проходить достаточное количество жидкости. Если это недопустимо в силу конструктивных особенностей и условий эксплуатации, тогда в насосе присутствует кожух с закрытым верхом. За счет этого жидкость подается в насос.

Для надежной и длительной работы погружных насосов важно обеспечить дополнительную защиту от перегрузки. Поскольку отслеживать его состояние и исправность сложнее (агрегат находится на глубине), важно продумать систему защиты для продления срока службы оборудования

Также должна быть исправной и срабатывать система автоматического отключения насоса в случае остановки двигателя или заклинивания рабочего колеса. Если такая проблема будет иметь место, сложно предотвратить повреждение обмоток двигателя.

Погружные насосы бывают разных размеров, который зависит от сферы их применения – бытового или промышленного. Для тяжелых условий эксплуатации используют крупные насосы с возможностью перекачивания частиц диаметром до 65 мм. В промышленных условиях может иметь место двухуровневая система насоса путем соединения дух агрегатов. Так, можно обеспечить бесперебойность работы даже при выходе одного из строя. Плюсом такой системы будет снижение износа каждого насоса.

Погружные насосы устанавливают в следующих местах:

  • глубокие колодцы;
  • подвальные помещения с рисками затопления;
  • в паре с обычным насосом, чтобы предотвратить выход из строя одного устройства, двигатель которого может забиться загрязненной жидкостью;
  • в местах с ограниченным пространством;
  • сельскохозяйственные постройки;
  • трубопроводы с целью увеличения потока воды. Допустима горизонтальная установка насоса. Они бесшумные, поэтому использовать погружные насосы в трубах оптимально. Более того, двигатель и электрические детали закрыты для попадания жидкости.

Погружные насосы нельзя использовать при повышенных температурах жидкостей, в условиях агрессивной окружающей среды, в источниках с абразивными элементами, с твердыми частицами увеличенных фракций.

В погружных насосах система управления предназначена для контроля над уровнем жидкости. Она должна запускать или останавливать работу оборудования при достижении определенного уровня жидкости

В таких насосах важно исключить работу на сухую, что может привести к выходу из строя двигателя. Для этого производители оснащают модели насосов дополнительными функциями и сигналами тревоги.

Современные погружные насосы – это высокоэффективное оборудование, которое считается безопасным в использовании. Это долговечные двигатели со сроком эксплуатации свыше 40 лет. Это отличный вариант для перекачивания воды из источников, когда нужно полностью погрузить насос в жидкость или установить его ниже уровня земли.

Правила техники эксплуатации струйных насосов

При сборке насоса необходимо обеспечить соосность сопла и диффузора, а также правильную установку кольцевого зазора — расстояние от торца сопла до входного диаметра диффузора, — который должен быть 0,35Д — (Д -входящий диаметр диффузора). Кольцевой зазор устанавливается согласно заводской инструкции. На соплах не должно быть забоев и задиров.

Перед пуском эжектора в работу необходимо:

  • 1) открыть клапан подвода рабочей воды (быстро);
  • 2) открыть клапан приема воды к эжектору.

Неисправности:

Насос не обеспечивает всасывания и не дает полной производительности:

  • а) Неправильный пуск;
  • б) Засоренность, подсос воздуха на всасывании по причине неисправности всасывающего тракта;
  • в) Засорение и износ сопла, неправильно установлен кольцевой зазор;
  • г) Кавитация на всасывании.

На судах флота рыбной промышленности для перекачивания пульпы, т.е. смеси рыбы с водой используют эрлифты или гидроэлсваторы.

На рисунке 3.5 показана схема эрлифта, который состоит из всасывающего шланга 3, напорного трубопровода воздуха 4 и компрессора 5.

Сжатый воздух (0,6-0,8 МПа) из компрессора 5 по трубопроводу 4 поступает в специальную камеру 2. Из камеры воздух в виде пузырьков поднимается по шлангу вверх и расширяется. От этого плотность смеси вода-воздух уменьшается, по этой причине из-за разности плотной воды и смеси вода-воздух и по закону сообщающихся сосудов более плотная вода вытесняет более легкую смесь, которая поднимается на палубу и выливается наружу. Вместе с водой в систему через патрубок 1 попадает рыба, которая подается на судно. Вода уходит через водоотделитель 6, а рыба скатывается в бункер.

Увеличение количества подаваемого воздуха уменьшает плотность смеси и так же, как опускание смесительной камеры, повышающее глубину погружения h, увеличивает высоту подъема до 2,5 м над уровнем моря. Основной недостаток эрлифта — малый КПД — ŋэр — 20-30%.

Литература

Вспомогательные механизмы и судовые системы. Э. В. КОРНИЛОВ, П. В. БОЙКО, Э. И. ГОЛОФАСТОВ (2009) Эксплуатация судовых вспомогательных механизмов, систем и устройств — Попов В.В.

Rating 0.00 (0 Votes)

Классификация по месту расположения

Все насосы также делятся на погружные и внешние (более распространенное название – поверхностные). Первый тип находится непосредственно в воде или частично в ней. Модели, которые погружаются не полностью, именуются полупогружными.

Стоит отметить, что есть несколько видов погружных насосов.

  1. Вибрационные – здесь работа основана на электромагнитном поле и вибрации специального механизма, подобные виды насосов требуют определенных правил установки. В частности, существуют строго заданные расстояния до дна.
  2. Центробежные аппараты, которые были рассмотрены выше.

Все погружные насосы могут иметь двигатель, который уже встроен в корпус, то есть он находится под водой. У некоторых моделей он располагается на поверхности.

Наружный насос расположен непосредственно около водоема. В данном случае всасывающий механизм осуществляет свою работу через специальный шланг. Чем дальше насос расположен от воды, тем мощнее он должен быть.

Чаще всего поверхностные насосы используют на дачах и загородных участках. Они имеют высокую экономичность и небольшие размеры, что делает их популярными для использования в быту. Могут быть оснащены автоматикой, что делает их полностью автономными.

Совет! При использовании выносного эжектора можно осуществлять добычу воды с внушительной глубины.

Погружные насосы

Погружные насосы, помимо прочего, делятся по назначению:

  • скважинные;
  • колодезные;
  • дренажные;
  • фекальные.

Скважинные имеют вытянутую форму и используются для добычи воды из скважин. Компактные габариты позволяют опускать в небольшие по диаметру скважины, однако добычу можно вести с очень большой глубины. Отличаются высокой мощностью работы. Используются только для воды со слабым загрязнением или полностью чистой.

Колодезные используются для выкачивания воды из шахт и колодцев. Основное отличие от скважинных – больший размер и меньшая глубина погружения. Являются достаточно мощными, могут работать с водой, в которой содержится ил, песок или глина. Достаточно тихие и не вибрируют.

Основной задачей дренажников является откачивание загрязненной воды из подвалов, траншей, котлованов и прочих мест. Есть разновидности с ножами для измельчения, а также для работы со слабозагрязненными средами.

Фекальный насос не имеет значительных отличий от дренажных, кроме того, что они рассчитаны на сильнозагрязненную воду с твердыми веществами большого размера (порядка 35 мм в диаметре).Также в них устанавливаются ножи для измельчения мусора. Подобные насосы могут быть как погружными, так и наружными.

Поверхностные насосы

Основным отличием поверхностных насосов является их расположение недалеко от воды. Их можно разделить на несколько типов:

  • самовсасывающие;
  • автоматические;
  • насосные станции.

Самовсасывающие насосы бывают безэжекторные и эжекторные. В первом случае втягивание воды обеспечивается самой конструкцией, во втором с помощью создания вакуума в камере. Применяются для полива, доставки питьевой воды или для бытовых нужд, а также для забора воды из водоемов на поверхности (реки, пруда). Вода должна быть чистой или с небольшим загрязнением.

Автоматические насосы обеспечиваются автоматикой, которая упрощает процесс использования. За насосом не нужно следить. Насосы с автоматикой питаются от электричества. Сам автомат может быть установлен непосредственно в модели или же в качестве отдельной системы. Основная задача – оптимизация использования, а также защитная функция. Например, устройство перестанет работать при резком обмелении водоема, повышении температуры перекачиваемого вещества или при перепадах напряжений в сети.

Насосная станция состоит из самого насоса, обратного клапана, системы управления и аккумулятора. Подобное устройство имеет резиновую грушу, установленную внутри металлического корпуса. В грушу закачивается вода, а вокруг нее воздух. Специальный датчик реагирует на изменения в давлении окружающей среды, которые происходят по мере наполнения груши водой. Когда давление достигает максимума, датчик останавливает подачу воды.

Конструктивная схема и принцип действия струйного насоса

Струйные насосы в качестве источника энергии используют энергию жидкости, находящейся под давлением. Передача энергии от рабочей жидкости к перекачиваемой осуществляется путем прямого увлечения в движение одного потока другим. На рис. 2.35 приведен чертеж водоструйного насоса. Корпус насоса имеет приемный 3 и отливной 5 патрубки с фланцами, к которым присоединяются приемный и отливной трубопроводы. В патрубок 2 ввернуто сопло 1, к фланцу которого присоединяется трубопровод рабочей воды. Корпус насоса укреплен тремя-четырьмя продольными ребрами жесткости 4. Проточная часть насоса условно разделяется на приемную камеру а (до среза сопла), камеру смешения б (до конца горла — узкой части корпуса) и диффузор в. В сопло подается рабочая вода из пожарной напорной магистрали на выходе из сопла струя рабочей воды приобретает скорость до 35-50 м/с и выходит в камеру смещения в форме узкого конуса. За счет силы трения струя рабочей воды увлекает за собой в диффузор воздух из приемной камеры, создает в ней вакуум и всасывает воду из приемного трубопровода. В камере смешения струя рабочей воды, увлекая с собой перекачиваемую воду, перемешивается с ней, смесь устремляется в диффузор. При смешении потоков скорость рабочей воды уменьшается, а скорость перекачиваемой воды увеличивается, в горле насоса скорости потоков уравниваются. При дальнейшем движении смеси в диффузоре скорость ее уменьшается, а давление увеличивается. В качестве рабочей жидкости в струйных насосах кроме воды применяют водяной пар, воздух и т. д. Струйные насосы перекачивают различные среды: воду, воздух, водяной пар, паровоздушную смесь, газы, пульпу и др.

Струйные насосы, откачивающие жидкость из обслуживаемой емкости, называют эжекторами, а нагнетающие—инжекторами. Работу струйных насосов характеризуют следующие основные параметры:

  • GBХ – массовый расход перекачиваемой жидкости (подача);
  • GPАБ – массовый расход рабочей жидкости;
  • РРАБ, РВС, РН – давления рабочей жидкости на всасывании насоса и на нагнетании (рис. 2.35);
  • GBС/ GPАБ – коэффициент всасывания (эжекции);
  • GBС/ GPАБ – удельный расход рабочей жидкости;
  • РН / РВС – степень повышения давления.

Для струйных насосов характерна зависимость: при увеличении коэффициента всасывания уменьшается степень повышения давления. На кораблях применяют:

  • эжекторы осушения или затопления — водоструйные водяные насосы для удаления воды за борт или для принудительного затопления помещений надводного корабля;
  • эжекторы рассола — водоструйные рассольные насосы для удаления рассола из испарителей водоопреснительных установок с одновременным охлаждением рассола путем разбавления его рабочей (забортной) водой;
  • инжекционные подогреватели — пароструйные конденсатные насосы для возврата в конденсатно-питательную систему и подогрева конденсата вспомогательных механизмов;
  • паровоздушные эжекторы (ПВЭ) — пароструйные воздушные насосы для создания вакуума в обслуживаемых аппаратах, конденсаторах и испарителях главных и вспомогательных механизмов.

Группа струйных насосов — ПВЭ наиболее разнообразна по принципиальным и конструктивным схемам; Для обеспечения большей степени сжатия применяют многоступенчатые ПВЭ, а для обеспечения меньшего расхода рабочего пара — ПВЭ с промежуточными вспомогательными конденсаторами у каждой ступени сжатия. В зависимости от назначения эжекторы могут быть главные и вспомогательные.

Струйные насосы обладают рядом достоинств: простотой устройства и обслуживания, дешевизной изготовления, отсутствием движущихся частей, надежностью и долговечностью, компактностью, возможностью сохранения чистоты перекачиваемой жидкости (отсутствием смазочных масел, загрязнений от уплотнений и трущихся деталей), высокой объемной подачей и др.

Недостатком струйных насосов является низкий коэффициент полезного действия (10-15%).

Области применения

Конструкции и принцип действия различных насосов определяют диапазоны подачи и напора, в
пределах которых необходимо применять насос определенного типа. Рассматривая области применения устройств для напорной подачи жидкостей, следует также иметь в виду, что ещё в XIX веке, насосы
использовались как генераторы гидравлической энергии. Эта энергия от центральных энергетических установок с поршневыми насосами и паровыми машинами по водопроводам высокого давления передавалась на промышленные предприятия к потребителям. В XX веке стали применять
центробежные и роторные насосы в качестве генераторов гидравлической энергии в гидравлических передачах и системах гидропривода машин, в которых наряду с гидравлическими двигателями они являются основным элементом.

Насосные агрегаты (насосы) применяются во всех отраслях промышленности, сельском и
коммунальном хозяйстве, на транспорте и в бытовых целях.

Насосы относятся к классу энергетических машин, в которых механическая энергия привода
преобразуется в энергию потока жидкости ( в том числе и с определенным процентом твердых включений).

По принципу действия насосы подразделяются на две основные группы: динамические и
объемные.К первой относятся насосные агрегаты, где жидкость
под воздействием гидродинамических сил перемещается в камере
постоянно сообщающихся с входом и выходом насоса.

В объемных – перемещение рабочей среды осуществляется под воздействием
поверхностного давления при периодическом изменении объема насосной
камеры попеременно сообщающейся с входом и выходом насоса.

В группу динамических относят: лопастные (центробежные и осевые насосы), насосы трения
(вихревые, дисковые, червячные гидроструйные), инерционные
(вибрационные).

К объемным – насосы возвратно-поступательного действия (поршневые, плунжерные),
а также ротационные (шестеренчатые и винтовые).

Для того чтобы определиться в выборе насосного агрегата в каждом конкретном случае
необходима следующая информация:

Для каких целей будет использоваться насос?
Какой объем жидкости необходимо транспортировать (расход) при помощи насоса и с каким давлением (напором)?
Необходима информация о рабочей (перекачиваемой) среде, а именно: вязкость, химическая активность, наличие твердых веществ и их величина, температурные показатели рабочей среды, ее
взрыво-пожаро безопасность и токсичность.
Условия эксплуатации (на открытом воздухе, в помещении, влажность и взрыво-пожароопасность
помещения, где будет эксплуатироваться насос). Например, опытные механики знают, что взрыво-пожаробезопасности конструкции насоса при его подборе очень сложно добиться для насосов с исполнением проточной части из полимерных материалов (полипропилен, фторопласты, тефлон), не пропускающие, а накапливающие статический электрический заряд. Работа вращающегося вала двигателя на насосе создаёт за счёт силы трения внутри рабочего колеса статическое электричество, которое при накоплении может служить причиной электрического разряда. В зависимости от свойств перекачиваемая жидкость может вспыхнуть, воспламениться, а так как внутреннее пространство в трубопроводе и в полости насоса ограничено, в отдельных случаях существует риск детонирования жидкости с последующим взрывом, который в свою очередь при достаточной силе способен разрушить трубы и привести к возникновению открытого очага горения

Поэтому так важно проследить, чтобы с одной стороны материал проточной части насоса, позволял снять статический электрический заряд (таким материалом могут служить различные марки нержавеющей стали), а с другой стороны, необходимо предусмотреть саму систему заземления. В зависимости от типа насоса заземление осуществляется на внешнюю поверхность улитки, причём в месте заземления зачастую производителями предпочтение отдаётся бронзовым болтам и гайкам

Определяющими техническими параметрами насосов являются подача (расход) и напор
(давление).

Подача – это объем жидкости, подаваемой насосом в единицу времени, выраженной в м3/ч (кубометров в час) или л/с (литров в секунду). Обозначается «Q».

Напор – это разность удельных энергий жидкости в сечениях после и до насоса, выраженная в метрах водяного столба (м). Обозначается «Н»,
другими словами давление жидкости в трубопроводе на выходе из насоса.

Струйный насос: принцип работы, конструкция

Среди всей напорной техники струйные насосы самые простые по типу конструкции и принципу действия. За счет простоты конструкции обеспечивается надежность аппаратов, которые могут быть одноступенчатыми или многоступенчатыми, и применяться для различных целей и нужд.

Струйные насосы, как любая техника имеет свою историю. Первый струнный насос в том виде, в котором мы его знаем, использовался англичанином Томпсоном, как лабораторный прибор для исследований (примерно с 1885-го года). С его помощью он отсасывал воду и воздух из пробирок. Затем инженер Нагель применил струйные насосы для откачивания воды из затопленных шахт. Затем струйный насос стал работать как эжектор и инжектор. В Советском Союзе широкое применение струйные насосы получили только в 50-е годы прошлого века.

Водоструйный вакуумный насос — простой, но эффективный лабораторный прибор

Вакуумные насосы широко применяются в лабораторной практике для откачки газов, воздуха, паров, для фильтрации под вакуумом, для создания линий вакуума в лабораторных установках.

Для различных задач требуется создание разной степени разряжения (остаточного давления). Современные масляные и мембранные насосы позволяют добиваться давления до 10-10 мм рт.ст., но для стандартных лабораторных задач такие давления требуются редко. Чаще всего бывает вполне достаточно давления 30 … 10 мм рт.см. Такую степень разрежения способен обеспечить самый простой вид вакуумных насосов — водоструйный вакуумный лабораторный насос.

Принцип действия водоструйного насоса

Принцип действия водоструйного насоса — создание разряжения за счет протекающей через трубки струи воды. Давление воды обеспечивает водопровод, никаких дополнительных установок не требуется.

В насосе диаметр трубки, по которой поступает вода из водопроводного крана, постепенно сужается. Это приводит к уменьшению давления воды, но резкому увеличению скорости движения струи. Вырываясь из сопла утончающейся трубки в ограниченное пространство с низким давлением, вода движется с большой скоростью и захватывает воздух из бокового отвода насоса.

Степень остаточного давления, которое может обеспечить водоструйный насос, вычисляется давлением паров воды при определенной температуре. Так, при температуре воды +30 °С давление можно понизить до 31,8 мм рт.ст., а при температуре воды +10 °С — до 9,2 мм рт.ст. Таким образом, чем более холодная вода будет поступать в водоструйный насос, тем большего разрежения удастся достичь.

Как действует простой водоструйный насос

Есть несколько конструкций водоструйных насосов. Самые простые из них делаются из стекла и прикрепляются к водопроводному крану через толстую резиновую трубку, которую прочно укрепляют на водопроводном кране и на верхнем конце насоса. К боковому отводу с помощью прочной резиновой трубки подсоединяют сосуд, в котором требуется создать пониженное давление. Лучше всего это делать через промежуточную двух-трехгорлую склянку, которая защитит сосуд с разрежением от попадания воды из насоса при случайном отключении или падении давления воды в кране.

Какие бывают водоструйные насосы

Водоструйные насосы изготавливают из стекла, пластика и металла. Пластиковые и металлические вакуумные насосы не только прочнее, надежнее и долговечнее. Чаще всего они оснащаются дополнительными приспособлениями, делающими процесс установки и эксплуатации проще и удобнее. К таким приспособлениям относятся: накидная гайка с прокладкой для соединения с водопроводным краном; вентиль для отключения насоса; предохранительный клапан, заменяющий промежуточную склянку; манометр или вакуумометр; трехходовый кран для отключения сосуда с разрежением от промежуточной склянки.

Следует отметить важное преимущество стеклянных вакуумных водоструйных насосов — нейтральность стекла к большинству химических веществ, что делает его востребованным в задачах, когда необходимо откачивать агрессивные газы, воздействующие на элементы конструкции металлического или пластикового насоса. В магазине Prime Chemicals Group вы можете купить вакуумный насос в Москве и области недорого

В продаже есть вакуумный лабораторный насос из стекла, и полипропиленовый вакуумный насос, цена которого тоже доступная. У нас большой ассортимент оборудования для лабораторий

В магазине Prime Chemicals Group вы можете купить вакуумный насос в Москве и области недорого. В продаже есть вакуумный лабораторный насос из стекла, и полипропиленовый вакуумный насос, цена которого тоже доступная. У нас большой ассортимент оборудования для лабораторий.

Обслуживание струйных насосов

Для приведения в действие струйного насоса достаточно лишь приготовить трубопроводы системы и подать к соплу рабочую жидкость. Многоступенчатые паровоздушные эжекторы вводят в действие последовательно, начиная с последней ступени, работающей в атмосферу. О нормальной работе ступени и всего эжектора судят по показаниям вакуумметров. Срыв в работе одной из ступеней сжатия приводит к срыву в работе всего эжектора. Срыв в работе может произойти из-за нарушения режима охлаждения конденсаторов, а чаще из-за засорения сопел окалиной, грязью, отложением солей.

Водоструйные эжекторы системы осушения откачивают воду за борт через невозвратно-управляемые клапаны. При вводе эжектора в работу вместе с рабочей водой в первый период за борт удаляется воздух из всасывающей магистрали, на отливе наблюдается прерывистая струя молочного цвета. В дальнейшем о нормальной работе эжектора судят по положению рычага отливного клапана, который должен находиться в открытом положении и слегка вибрировать. Снижение подачи эжектора может произойти при засорении приемных фильтров (сеток) на всасывающем трубопроводе. У всех струйных насосов снижение подачи и неустойчивая работа (вплоть до срыва) наблюдаются при уменьшении давления рабочей жидкости или при нарушении герметичности всасывающего трубопровода (вследствие подсоса воздуха).

Во время планово-предупредительных осмотров струйных насосов особое внимание необходимо обращать на чистоту внутренней поверхности, состояние и размеры проточной части сопла, а также на его установку по месту, т. е. на центровку и соблюдение указанного в формуляре расстояния от среза сопла до горла диффузора

на центровку и соблюдение указанного в формуляре расстояния от среза сопла до горла диффузора.

При подготовке к пуску пароструйного эжектора подается охлаждающая вода на холодильник эжектора, открывается секущий клапан и продувается паропровод рабочего пара через эжектор. После этого давление пара перед соплом поднимается до нормального и, как только вакуумметр будет показывать нормальную величину вакуума, медленно открывается клапан отсоса воздуха на эжектор. В работу сначала вводится эжектор последней ступени, остальные ступени вводятся по мере надобности.

Во время работы пароструйного эжектора производится наблюдение за нормальностью подачи и температурой воды перед холодильником эжектора, за давлением рабочего пара и величиной вакуума.

При остановке пароструйного эжектора закрывается приемный воздушный клапан, клапан рабочего пара и после достаточного охлаждения холодильника прекращается подача воды на него.

Пуск водоструйного эжектора производится открытием клапана подвода рабочей воды и всасывающего клапана.

Остановка водоструйного эжектора производится закрытием клапанов всасывания и рабочей воды.

При подготовке инжектора к пуску открывается водоприемный клапан и питательный клапан на котле. Затем открывается секущий паровой клапан и медленно переводится рукоятка пускового клапана. Как только из вестовой трубы выйдет весь воздух и покажется вода, пусковой клапан открывается на необходимую величину.

Запускать инжектор следует осторожно, чтобы не обжечься паром, выходящим из вестовой трубы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector